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This paper is concerned with convective and absolute instabilities in the boundary-
layer flow over the outer surface of a sphere rotating in an otherwise still fluid. Viscous
and streamline-curvature effects are included and the analysis is conducted between
latitudes of 10◦ and 80◦ from the axis of rotation. Both convective and absolute
instabilities are found at each latitude within specific parameter spaces. The results of
the convective instability analysis show that a crossflow instability mode is the most
dangerous below θ = 66◦. Above this latitude a streamline-curvature mode is found
to be the most dangerous, which coincides with the appearance of reverse flow in the
radial component of the mean flow. At low latitudes the disturbances are considered
to be stationary, but at higher latitudes they are taken to rotate at 76% of the sphere
surface speed, as observed in experimental studies. Our predictions of the Reynolds
number and vortex angle at the onset of convective instability are consistent with
existing experimental measurements. Results are also presented that suggest that the
occurrence of the slowly rotating vortices is associated with the dominance of the
streamline-curvature mode at θ = 66◦. The local Reynolds number at the predicted
onset of absolute instability matches experimental data well for the onset of turbulence
at θ = 30◦; beyond this latitude the discrepancy increases but remains relatively small
below θ = 70◦. It is suggested that this absolute instability may cause the onset of
transition below θ = 70◦. Close to the pole the predictions of each stability analysis
are seen to approach those of existing rotating disk investigations.

1. Introduction
When a sphere rotates in still fluid a flow is induced in which the fluid moves

over the outer surface from the poles to the equator and is ejected radially from the
equator. The resulting three-dimensional flow was first investigated theoretically by
Howarth (1951), who made boundary-layer approximations to the steady Navier–
Stokes equations and used a series solution to calculate the mean flow. Theoretical
papers in the past have concentrated on the laminar mean flow, and for instance
Banks (1965) uses Howarth’s series solution and Manohar (1967) and Banks (1976)
use more accurate finite difference techniques. The experimental papers of Sawatzki
(1970) and Kohama & Kobayashi (1983) report that the flow exhibits transitional
and turbulent regions as well as the laminar region. The flow around the pole remains
laminar, with spiral vortices characteristic of crossflow instabilities appearing at a
higher latitude, while the turbulent region occurs after the vortices have broken
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down at a higher latitude still. The results of Kohama & Kobayashi show that the
onset of transition to turbulence occurs at a repeatable consistent local Reynolds
number that is roughly the same at all latitudes below θ = 70◦, despite the instability
waves first appearing across a wide parameter range with varying rotation rate and
sphere radius. This observation is highly suggestive that the boundary layer becomes
absolutely unstable at, or just before, the transition location, leading to the temporal
growth of the disturbances at that point and triggering the nonlinear behaviour
characteristic of the onset of transition. This is precisely the mechanism which has
been claimed by Lingwood (1995) to pertain to transition on the rotating disk. Given
the similarity between the boundary layers on the rotating disk and the sphere, it is
reasonable to expect that the sphere might exhibit absolute instability as well, and
this is what will be investigated here. The experimental papers of Sawatzki (1970) and
Kohama & Kobayashi (1983) also report that the transitional and turbulent regions
move nearer to the pole with increased rotation rate. The spiral vortices are observed
to make an angle of 14◦ to a circle parallel to the equator at the onset of instability,
which reduces to around 4◦–8◦ as the rotation rate is increased. The number of spiral
vortices at the onset of instability increases with increased rotation rate and appears
to asymptotically approach a value of 31 or 32, which is the same number as observed
experimentally on the rotating disk.

The transition of the boundary layer on a rotating sphere is also studied in
the experimental paper of Kobayashi & Arai (1990). For rotating disks and cones
experiments have shown that the spiral vortices are fixed on the body’s surface at all
times, see Kohama (1984) and Kobayashi et al. (1987). However, Kobayashi & Arai
observe that the spiral vortices are fixed on the sphere surface when the rotation rate
is large, while they move relative to the sphere surface when the rotation rate is small.
The relative speed of these slow vortices is always 0.76 times the surface speed of the
sphere. For zero axial flow, the slow vortices occur below a spin Reynolds number of
approximately 105.

To our knowledge the only theoretical paper on the stability of the rotating-sphere
boundary layer is by Taniguchi, Kobayashi & Fukunishi (1998). The paper uses linear
stability theory, as we do in this paper although by taking a different approach, to pre-
dict the onset of convective instability and hence the appearance of the spiral vortices
on a sphere rotating in an otherwise still fluid. The perturbation equations derived
in their paper are solved at each latitude using the approximate mean flow profiles
of Banks (1965). Taniguchi et al. show that both crossflow and streamline-curvature
instabilities appear in the boundary layer. The two instability types correspond to
the appearance of two lobes on the neutral curves. The crossflow instability domi-
nates near to the poles and the streamline-curvature instability dominates near to the
equator. The number of vortices at the onset of instability is also calculated at each
latitude and is seen to decrease with increasing latitude. At the onset of instability
the spiral vortices are predicted to be stationary with respect to the sphere surface,
with the region of instability moving closer to the pole with increased rotation rate.
The discrepancy between the experimental critical Reynolds numbers for the onset
of spiral vortices and those calculated increases slightly with latitude when below
70◦ but still shows reasonably good agreement. However, above a latitude of 70◦ the
predicted critical Reynolds numbers diverge sharply from the experimental values.

If the response to a transient disturbance is unbounded for large time at all points in
space, the flow is absolutely unstable. If the boundary layer were solely convectively
unstable a purely spatial analysis would be appropriate, but if the flow becomes
absolutely unstable, then unless a spatio-temporal analysis is performed, important
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characteristics will be missed. In this paper a spatial analysis is used to study the
convective instability of the boundary layer in conditions when the flow is not
absolutely unstable and then a spatio-temporal analysis is used to study the absolute
instability of the rotating-sphere boundary layer. Briggs (1964) and Bers (1975) have
shown that an absolute instability can be identified by singularities corresponding to
zeros of the dispersion relation. The singularities occur when waves that propagate
energy in different directions coalesce, with the point of coalescence known as a
pinch point. Pinch points can appear as the Reynolds number is varied, and at
these points the flow changes from a convectively unstable regime to an absolutely
unstable regime. Examples of absolute instability in fluid mechanics include the work
by Huerre & Monkewitz (1985), Niew (1993) and Lingwood (1995, 1997). Similar
ideas have applied in the context of the boundary layer on a swept wing, see for
example Taylor & Peake (1998). In this present paper, Briggs’ method is used to
distinguish between absolutely and convectively unstable time-asymptotic responses
to impulsive excitation of the rotating-sphere boundary layer, closely following the
work of Lingwood (1995) on the rotating disk. In § 2 the solution of the steady
boundary-layer equations that give the laminar flow profiles is described and the
unsteady perturbation equations for the system derived. The convective and absolute
instability analyses are conducted in § 3 and § 4 respectively, where our theoretical
predictions are compared with existing experimental results.

2. Formulation
We use a spherical polar coordinate system that is fixed in space with origin located

at the centre of the sphere. The sphere is of radius a? and rotates at a constant angular
frequency Ω?, the distance r? is measured radially from the centre of the sphere, θ is
the latitude measured from the axis of rotation and φ is the azimuth. The coefficient
of kinematic viscosity is denoted by ν? (stars indicate dimensional quantities).

The non-dimensional mean flow variables are defined as

U(η, θ) =
U?

Ω?a?
, V (η, θ) =

V?

Ω?a?
, W (η, θ) =

W?

(ν?Ω?)1/2
, (2.1)

where U, V and W are the non-dimensional velocities in the θ-, φ- and r?-directions
respectively and η = (Ω?/ν?)1/2(r? − a?) is the non-dimensional distance from the
sphere surface in the radial direction. Note that this variable is scaled on the boundary-
layer thickness δ? = (ν?/Ω?)1/2. Because the sphere rotates in an otherwise still fluid
the mean pressure, P?, is a constant and so does not appear in the mean flow
equations.

The equations that govern the mean flow are stated in, amongst others, Banks
(1965) and are non-dimensionalized using (2.1) as

W
∂U

∂η
+U

∂U

∂θ
− V 2 cot θ =

∂2U

∂η2
, (2.2)

W
∂V

∂η
+U

∂V

∂θ
+UV cot θ =

∂2V

∂η2
, (2.3)

∂W

∂η
+
∂U

∂θ
+U cot θ = 0. (2.4)

These equations are based on the usual boundary-layer assumption of large Reynolds



202 S. J. Garrett and N. Peake

20

15

10

5

0

è

–0.02 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
U

20

15

10

5

0

è

–0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
V

20

15

10

5

0

è

–1.0 –0.8 –0.6 0 0.2 0.4
W

0.9

–0.4 –0.2

Figure 1. Mean velocity profiles U(η), V (η), W (η) at latitudes of
θ = 10◦–80◦ (left to right) in 10◦ increments.

number. The non-dimensional boundary conditions are

U = W = V − sin θ = 0, η = 0,
U = V = 0, η →∞.

}
(2.5)

The first set represents the no-slip condition on the sphere surface, and the second
set represents the quiescent fluid condition away from the sphere.

The system of equations (2.2)–(2.5) is solved using the NAG routine D03PEF to
find the mean flow at each latitude. This NAG routine is a general PDE solver
that reduces the system of PDEs to a system of ODEs in η. The resulting system
of ODEs is solved at each latitude by marching from a given complete solution at
θ = 5◦ towards the equator θ = 90◦ in 1◦ increments. At each latitude a backward
differentiation formula method is used over a regularly spaced grid of 2000 data
points between η = 0 and η = 20. The initial solution at θ = 5◦ is found using the
series solution method as described by Banks (1965). The resulting profiles have been
compared to the finite difference results of Banks (1976) and complete agreement is
found up to the equator. Figure 1 shows the three velocity components at latitudes
of θ = 10◦–80◦ in 10◦ increments. Note that the latitudinal velocity, U, is inflectional
at all latitudes, and also that fluid is entrained radially into the boundary layer at all
the latitudes shown.

The stability analysis conducted at a particular latitude involves imposing infinites-
imal small perturbations on the steady mean flow at that latitude. The dimensional
perturbation variables (denoted by lower-case hatted quantities) are assumed to have
the normal-mode form

(û?, v̂?, ŵ?, p̂?) = (u?(r?), v?(r?), w?(r?), p?(r?))ei(α?a?θ+β?a?φ sin θ−γ?t?). (2.6)
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The distance measured over the surface of the sphere from the pole to the latitude
under consideration is a?θ, and the dimensional wavenumber in this direction is α?.
The distance measured along a circular cross-section of the sphere by a plane perpen-
dicular to the axis of rotation is a?φ sin θ, and the dimensional wavenumber in this
direction is β?. The perturbed flow variables are now substituted into the dimensional
Navier–Stokes equations, with the perturbing quantities considered sufficiently small
that the resulting perturbation equations can be linearized. The perturbing quantities
are non-dimensionalized on the typical length, velocity, time and pressure scales: δ?,
a?Ω?, δ?/a?Ω? and ρ?(a?Ω?)2 respectively, where ρ? is the fluid density. The mean-flow
quantities are non-dimensionalized as in (2.1). This leads to a set of non-dimensional
perturbation equations after O(R−2) terms have been neglected. Here R = δ?a?Ω?/ν?

is the Reynolds number. Factors 1/(1 + η/R) appear multiplying terms in the pertur-
bation equations. These factors are set to unity in an approximation that is similar to
the parallel flow approximations made in many other boundary-layer investigations.
The parallel flow approximation limits the analysis to a local analysis at each value
of θ and its validity at low and high latitudes is discussed in § 5.

The perturbation equations can be written as a set of six first-order ordinary
differential equations using the transformed dependent variables:

z1(η; α, β, γ;R, θ) = (α− i cot θ/R)u+ βv, (2.7)

z2(η; α, β, γ;R, θ) = (α− i cot θ/R)Du+ βDv, (2.8)

z3(η; α, β, γ;R, θ) = w, (2.9)

z4(η; α, β, γ;R, θ) = p, (2.10)

z5(η; α, β, γ;R, θ) = (α− i cot θ/R)v − βu, (2.11)

z6(η; α, β, γ;R, θ) = (α− i cot θ/R)Dv − βDu, (2.12)

where D represents differentiation with respect to η. Writing α1 = α − [i cot θ/R]s,
these equations are

Dz1 = z2, (2.13)[
Dz2

R

]
v

=
1

R
([α2 + β2]v + iR(αU + βV − γ))z1

+

[
Wz2

R

]
s

+

(
α1U

′ + βV ′ +
[

1

R
(α1U + βV )

]
s

)
z3

+ i

(
α2 + β2 −

[
iα cot θ

R

]
s

)
z4 −

[
V cot θz5

R

]
s

+

[
1

R

((
α1

∂U

∂θ
+ β

∂V

∂θ

)
u− (α1V − βU)v cot θ

)]
s

, (2.14)

Dz3 = −iφ1 −
[

2z3

R

]
s

, (2.15)

Dz4 =

[
iWz1

R

]
s

−
[

iz2

R

]
v

+

[
2

R
(Uu+ Vv)

]
s

− 1

R
([α2 + β2]v + iR(αU + βV − γ) + DWs)z3, (2.16)
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Dz5 = z6, (2.17)[
Dz6

R

]
v

=

[
V cot θz1

R

]
s

+

(
α1

∂V

∂η
− β ∂U

∂η
+

[
1

R
(α1V − βU)

]
s

)
z3

+

[
Wz6

R

]
s

+

[
1

R

((
α1

∂V

∂θ
− β ∂U

∂θ

)
u+ (α1U + βV )v cot θ

)]
s

+

[
β cot θz4

R

]
s

+
1

R
([α2 + β2]v + iR(αU + βV − γ))z5. (2.18)

The subscripts v and s indicate which of the O(R−1) terms arise from the viscous and
streamline-curvature effects respectively. For a detailed investigation into streamline-
curvature instability in three-dimensional boundary layers the interested reader is
referred to Ito (1996). Note that since a stationary frame of reference is used Coriolis
terms do not appear in (2.13)–(2.18). Note also that the perturbation velocities u and
v still appear explicitly in (2.13)–(2.18), but can be expressed in terms of z1 and z2 via

u =
1

α2
1 + β2

(α1z1 − βz5),

v =
1

α2
1 + β2

(α1z5 + βz1).

The wavenumber in the θ-direction, α, and frequency, γ, are in general complex, as
required by the spatio-temporal analysis of § 4; we write these quantities as α = αr+iαi
and γ = γr + iγi. In contrast, the azimuthal wavenumber, β, is real. The angle that
the phase fronts make with a circle parallel to the equator is denoted ε, and is found
from

ε = tan−1(β/αr). (2.19)

The integer number of complete cycles of the disturbance round the azimuth is

n = βR sin θ. (2.20)

Later in the paper, we will identify ε and n as being the angle and number of spiral
vortices on the sphere surface.

By neglecting the O(R−1) streamline-curvature terms in (2.13)–(2.18) we find the
Orr–Somerfeld equation for the rotating sphere in the form

[i(D2 − σ2)2 + R(αU + βV − γ)(D2 − σ2)− R(αD2U + βD2V ]z3 = 0, (2.21)

where σ2 = α2 + β2.

3. The convective instability analysis
In this section we solve the eigenvalue problem defined by (2.13)–(2.18), with the

homogenous boundary conditions

zi = 0, η = 0,
zi → 0, η →∞,

}
(3.1)

where i = 1, 2 . . . 6. This eigenvalue problem will be solved for certain combinations
of values of α, β and γ at each Reynolds number, R, and for a particular value of θ.
From these we form the dispersion relation, D(α, β, γ;R, θ) = 0, at each θ, with the
aim of studying the occurrence of convective instabilities. This allows a discussion
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of the spatial branches of the dispersion relation before we study their pinching in
the absolute instability analysis of § 4. In each analysis the branches were calculated
using a double-precision fixed-step-size, fourth-order Runge–Kutta integrator with
Gram–Schmidt orthonormalization and a Newton–Raphson linear search procedure,
using a numerical code supplied by R. J. Lingwood (personal communication, 1999).

Since we are supposing here that the flow is not absolutely unstable it follows that
in the Briggs–Bers procedure we can reduce the imaginary part of the frequency to
zero, so that γi = 0. To produce the neutral curves for convective instability a number
of approaches can be taken. One approach involves finding the region of convective
instability at each latitude for different fixed vortex angles, so that β is known in terms
of α from (2.19). For a particular θ the real part of the complex frequency, γr , and
α are calculated with the perturbation equations solved for neutral stability, γi = 0,
at each Reynolds number. This was the approach taken by Taniguchi et al. (1998) in
their temporal analysis. Another approach is to insist that the vortices rotate at some
fixed multiple of the sphere surface velocity, thereby fixing the ratio γr/β, and then
α and β are calculated using a spatial analysis. This is the approach taken here. The
non-dimensional speed of the surface of the sphere is sin θ, and equating the relevant
multiple of this with the disturbance phase velocity in the same direction, γr/β, leads
to γr = cβ sin θ. This relationship must be satisfied with c = 1.0 if the vortices are to
rotate with the sphere and c = 0.76 if the vortices are those reported by Kobayashi
& Arai (1990) at high latitudes.

At the end of this section a further approach is taken in which the neutral curves
are plotted at each latitude for various integer n. The global neutral curve at a
particular latitude is then the envelope of the neutral curves pertaining to each single
n. This method enables a prediction of the speed of the spiral vortices with respect to
the sphere surface rather than making a priori assumptions on the longitudinal wave
speed.

3.1. Stationary vortices

We begin by considering vortices that rotate with the surface of the sphere. Latitudes
in the range θ = 10◦–80◦ have been analysed in increments of 10◦, and two spatial
branches were found to determine the convective instability characteristics of the
system at each latitude. Figure 2 shows these spatial branches in the complex α-plane
at θ = 10◦ and R = 2400. A branch lying below the αr-axis indicates convective
instability. In the analysis of the Orr–Somerfeld equation (2.21) branch 2 is not
found, showing that it arises here from the effects of streamline curvature. This is
consistent with existing work on the rotating disk, see Lingwood (1995). Figure 3
shows the two branches at R = 2500, where we see that an exchange of modes
has occurred between them. The modified branch 1 now determines the regions of
convective instability. Increasing the value of R causes the peak between the two
minima on branch 1 to move downwards and the points where the branch crosses
the αr-axis move apart, thereby widening the regions of instability and mapping out
two lobes on the neutral curve. Above a certain value of R the peak moves below the
real α-axis and further increases in R change the region of instability, producing the
upper and lower branches of the neutral curve. This branch behaviour is typical for
all latitudes below θ = 66◦. Above θ = 66◦ the two branches only appear like those
described when the peak in the modified branch 1 has moved below the αr-axis after
the branch exchange. The neutral curves for latitudes above θ = 66◦ therefore do not
have the two-lobed structure. At θ = 66◦ a region of reverse flow first forms in the
radial velocity component close to the sphere surface.
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Figure 2. The two spatial branches at θ = 10◦ and R = 2400 showing
convective instability from branch 1 only.
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Figure 3. The two spatial branches after the exchange showing regions of both
streamline-curvature and crossflow instability at θ = 10◦ and R = 2500.

Figure 4 shows the neutral curves for convective instability in the (R, αr)- and
(R, β)-planes at latitudes of θ = 10◦–70◦. Each curve encloses a region that is convec-
tively unstable. The neutral curves shown were calculated using the full perturbation
equations; while neutral curves calculated using the Orr–Somerfeld equation (2.21)
are not shown here, they were found to be single-lobed at each latitude, with critical
Reynolds numbers lower than the most dangerous modes in figure 4. The neutral
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Figure 4. The neutral curves of convective instability for stationary vortices at latitudes of
θ = 10◦–70◦ (right to left).

curves calculated from the full system and the Orr–Somerfeld equation were found
to match for large R, with the discrepancy at low R being reduced with increased
latitude.

The neutral curves in figure 4 show that the sphere boundary layer is increasingly
stable as we decrease the latitude from the equator towards the pole, consistent with
the experimental results of Sawatzki (1970) and Kohama & Kobayashi (1983). At
all latitudes in the figure except θ = 70◦, a two-lobed structure is seen. The larger
lobe, characterized by higher wavenumbers, is due to crossflow instabilities and the
smaller lobe, characterized by smaller wavenumbers, is due to streamline-curvature
instabilities. The crossflow mode possesses the lowest critical Reynolds number at
moderate θ, but the streamline-curvature mode becomes increasingly important as we
approach θ = 66◦ from below. At θ = 66◦ the streamline-curvature mode becomes
dominant, and so for θ = 70◦ we see a single-lobed neutral curve formed from the
streamline-curvature mode. The crossflow mode is seen to distort the shape of the
lobe but does not form a lobe itself.

Malik (1986) and Lingwood (1995), in their investigations on the rotating disk, use
a Reynolds number based on the local disk velocity at the radius under investigation
and the local boundary-layer thickness. The equivalent Reynolds number in our
investigation is written as RL = R sin θ. Using this Reynolds number a comparison
between our results and those of Malik (1986) for the rotating disk are made.
Although not shown here, plots of the neutral curves at θ = 10◦ in the (RL, αr)-
and (RL, β)-planes are very similar to Malik’s neutral curves. Figure 5 shows that
the convective-instability critical Reynolds numbers of the rotating-sphere boundary
layer approach those of the rotating disk as the pole is approached, i.e. as θ → 0.

For a comparison with the theoretical neutral curves of Taniguchi et al. (1998)
we consider our results in the (RS , n)-plane. Here RS = Ω?(a?)2/ν? = R2 is the spin
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Reynolds number (formed using the sphere radius a? as the length scale rather than
δ?) and n is the number of vortices from (2.20). Figure 6 shows the neutral curves in
this plane, where we see that the number of spiral vortices at the onset of instability
decreases with increased latitude. This property was also found by Taniguchi et al.,
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The vertical dashed line indicates the observed onset of vortices rotating at 0.76 times the sphere
surface by Kobayashi & Arai (1990).

with the values of n and the critical Reynolds numbers similar to ours. Kohama &
Kobayashi (1983) observe the number of spiral vortices at the onset of instability
increasing with increased rotation rate, i.e. increased RS , and tending to the value
observed on the rotating disk (n ≈ 32). Figure 6 is consistent with this behaviour
although we find n tending to approximately 22 at the onset of the crossflow mode
as we move towards the pole, i.e. the value of n associated with the smallest value
of RS on the upper right-most neutral curve in figure 6. This discrepancy occurs
because the spiral vortices are not neutral but growing spatially in the latitudinal
direction. The calculated value of n is equal to that calculated by Malik (1986) for
the rotating disk. Using (2.19), the vortex angles show a roughly constant value of
ε ≈ 11.4◦ and 19.4◦ at the onset of the crossflow and streamline-curvature instability
modes respectively at all latitudes. This is consistent with the results of Malik (1986)
on the rotating disk, where the vortex angles are calculated to be ε = 11.4◦ and 19.5◦
respectively, and are reasonably close to the experimental observation of ε ≈ 14◦
reported by Kohama & Kobayashi (1983) on the rotating sphere. Taniguchi et al. fail
to observe the streamline-curvature instability lobe in their neutral curves for latitudes
lower than θ = 40◦. The explanation for this must arise from the approach taken in
their calculations. Recall that they fix the vortex angle at 14◦ which is in contrast to
the approach taken in this paper where the speed of the spiral vortices is fixed with
respect to the surface rotation speed of the sphere.

In figure 7, a comparison is made between the predicted critical Reynolds num-
bers calculated using the stationary-vortex assumption and the experimental results
of Kohama & Hobayashi (1983). For latitudes lower than θ = 60◦ we see very
good agreement between the experimental critical Reynolds numbers of Kohama &
Kobayashi’s larger sphere and the predicted onset of streamline-curvature instabilities.
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This is unexpected as the experiments should measure the lowest critical Reynolds
numbers and so pick up the onset of crossflow instabilities at latitudes below θ = 66◦.
However, note that Kohama & Kobayashi’s critical Reynolds numbers for their
smaller sphere do match onto the predicted onset of crossflow instabilities, although
unfortunately the critical Reynolds numbers for θ < 60◦ appear not to have been
measured on the smaller sphere. These findings may suggest that different instability
modes were being measured on the different sized spheres. Further experimental in-
vestigations are required to clarify this. At a latitude of θ = 60◦ we see a discrepancy
between the experimental critical values and those predicted for stationary vortices,
and this discrepancy quickly increases beyond this latitude. Note that this behaviour is
similar to that found by Taniguchi et al., and starts at the Reynolds number measured
by Kobayashi & Arai for the onset of the slow vortices. This strongly suggests that
the discrepancy is due to the stationary vortex assumption being invalid at higher
latitudes, and this point will be addressed now.

3.2. Slowly rotating vortices

The convective instability of the boundary layer has been studied for a variety of
vortex speeds at a number of latitudes. The neutral curves at each of these latitudes
show a similar behaviour as the vortex speed is reduced, i.e. the streamline-curvature
lobe is smoothed out as the speed is decreased, producing a single-lobed neutral
curve. The critical Reynolds numbers are found to increase with reductions in the
vortex speed, with the neutral curve eventually closing up and disappearing below
a critical value. This means that the boundary layer is increasingly stable to slowly
rotating vortices and cannot support them below a certain value of vortex speed.
The critical vortex speed has been found to decrease with latitude. Figure 8 shows
the set of neutral curves at a latitude of θ = 20◦, but the behaviour is typical of
all latitudes. Figure 7 shows the results of the slow vortex assumption analysis (i.e.
speed 0.76 times the sphere surface speed). By considering slowly rotating vortices the
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Figure 9. Critical Reynolds numbers at latitudes of θ = 20◦–70◦ (top to bottom) for neutral curves
defined by fixing n at various integer values. The circles indicate the results of § 3.1.

discrepancy between the experimental and predicted results is removed at θ = 70◦,
and greatly reduced at θ = 80◦.

To further investigate the vortex speed another approach can be taken in which
we plot the neutral curves defined by γi = αi = 0 that correspond to each integer n.
The global neutral curve at a particular latitude would then be the envelope of the
neutral curves pertaining to each single n. This approach does not require us to fix
the longitudinal wave speed c, but allows its prediction from the critical values of γr
and R using c = γrR sin θ/n. This approach has been taken at latitudes in the range
θ = 20◦–70◦ in 10◦ increments and the critical values of R for various integer n are
shown in figure 9.

At θ 6 60◦ we see that the curves have a single minimum. This minimum is the
critical Reynolds number of the crossflow lobe of the enveloping neutral curve, and
is identical to that calculated in § 3.1 when c was fixed at unity. The points where
c = 1.0 for each θ are also indicated on figure 9. The critical values of γr and R
at the minimum in the curve at each latitude lead to the prediction that c ≈ 1.0.
This agreement shows that fixing the longitudinal wave speed to c = 1.0 at the
low latitudes, as was done in § 3.1, is correct. This is in full agreement with the
experimental results of Kohama & Kobayashi (1983).

Figure 9 also shows that as the latitude is increased the curves flatten out until at
θ = 70◦ an inflection point is seen rather than the minimum. Further investigation of
latitudes between θ = 60◦ and 70◦ have shown that the inflection point first appears
at θ = 66◦. This is the latitude at which the streamline-curvature mode becomes
dominant. Hence, for θ > 66◦, our approach predicts that stationary vortices no
longer occur. However, since for θ > 66◦ figure 9 does not predict a minimum critical
R, we are not able to fix the value of the longitudinal wave speed at these high
latitudes from our theory. The value c = 0.76, which we applied earlier in this section,
has to be taken from experiment.
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Figure 10. Branches of type 1 and 2 at θ = 70◦ when R = 150, n = 9 and (a) γi = 3× 10−3,
(b) 1× 10−4, (c) −4.146× 10−4 and (d ) −4.5× 10−4. The branch point is indicated by ×.

4. The absolute instability analysis
In this section we solve the perturbation equations (2.13)–(2.18) subject to the

boundary conditions (3.1) with the aim of studying the occurrence of absolute
instabilities. To enable a spatio-temporal analysis to be completed, α and γ are both
complex quantities, while β remains real in order to enforce periodicity round the
azimuth. The term ‘spatial branch’ will be used again but this time to refer to solutions
of the dispersion relation that lie in the α-plane and have complex γ.

Briggs’ criterion, see Briggs (1964), is applied with fixed β to distinguish between
convectively and absolutely unstable time-asymptotic responses to an initial boundary-
value perturbation. The perturbation is provided by an impulsive longitudinal line
forcing, δ(θ− θs)δ(t)einφ, where δ(θ− θs) and δ(t) are the Dirac delta functions at the
latitude θs and at time t = 0 respectively. The criterion for absolute instability requires
branch-point singularities between at least two spatial branches of the dispersion
relation. Two of these branches must lie in distinct half-α-planes when γi is sufficiently
large and positive. Such a singularity is known as a pinch point. If γi > 0 at the
pinch point the flow is absolutely unstable, otherwise the flow is only convectively
unstable or stable. The latitudinal group velocity ∂γ/∂α is identically zero at a pinch
point. A branch-point singularity between two spatial branches that lie in the same
half-α-plane for large positive values of γi does not cause absolute instability. The
value of γ at a pinch point is denoted by γ◦ and α(γ◦) = α◦.

By considering the Rayleigh equation, Lingwood (1995) has shown that the absolute
instability of the rotating-disk boundary layer is inviscid in origin. By considering the
Orr–Somerfeld equation with very high Reynolds number, we have found that this
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Figure 11. Branches of type 1 and 3 at θ = 70◦ when R = 300, n = 30 and (a) γi = 4× 10−3,
(b) 1.157× 10−3 and (c) 1× 10−3.

is also the case for the rotating sphere at each latitude. For this reason we consider
only the full perturbation equations (2.13)–(2.18) in this paper.

Figure 10 shows the progress of branches 1 and 2 with R = 150 and n = 9
(β = 0.06) at a latitude of θ = 70◦, but is typical of the behaviour for all latitudes. In
§ 3 it was shown that branches of type 1 and 2 arise from crossflow and streamline-
curvature effects respectively. The figure shows the branches when γi = 3 × 10−3,
1 × 10−4, −4.146 × 10−4 and −4.5 × 10−4. A branch point has been found when
γ = 4.445 × 10−2 − i4.146 × 10−4 and α = 0.140 + i3.377 × 10−2 (as indicated in
figure 10c), but this is not a pinch point as branches 1 and 2 originate in the
same half-α-planes for large γi, see figure 10(a). Branches of type 1 and 2 originate
in the upper half-α-plane for all values of the parameters at each latitude and so
represent disturbances convecting away from the source towards the equator. To find
an absolute instability we therefore need to consider a branch originating in the lower
half-α-plane. Such a branch has been found that is equivalent to the branch 3 of
Lingwood (1995).

Figure 11 shows the progress of branches 1 and 3 with R = 300 and n = 30
(β = 0.1) at θ = 70◦. The figure shows the branches when γi = 4× 10−3, 1.157× 10−3

and 1× 10−3. As branches 1 and 3 originate in distinct half-α-planes there is a pinch
point at γ◦ = 6.652×10−2 +i1.157×10−3 and α◦ = 0.163− i7.628×10−2 in figure 11(b).
Note the branch exchange after the pinch point in figure 11(c).

Pinch points with γi > 0 have been found at all latitudes, and so the boundary
layer on the rotating sphere is absolutely unstable for certain values of R and β at
each latitude. Figure 12 shows the neutral stability curves for absolute instability in
the (R, γ◦r )-, (R, α◦r )-, (R, α◦i )- and (R, β)-planes at θ = 70◦, the flow being absolutely
unstable inside each curve. The shape of these curves is typical for all latitudes and



214 S. J. Garrett and N. Peake

αr
°

0.18

0.16

0.14

0.12

0.1
200 250 300 350 400

0.12

0.10

0.08

0.06

0.04

0.02 0

0.05

0.10

0.15

0.20

–0.12

–0.10

–0.08

–0.06

200 250 300 350 400

200 250 300 350 400 200 250 300 350 400

R R

γr
°

αi
°

β

Figure 12. Absolute instability neutral curves at θ = 70◦ in the
(R, α◦r )-, (R, α◦i )-, (R, γ◦r )- and (R, β)-planes.

so we do not show the other neutral curves, but the local critical Reynolds numbers
for each latitude are shown in table 1. The local Reynolds number, RX = R2θ sin θ,
is formed using the distance to the latitude in question from the pole over the sphere
surface, a?θ, as the length scale and the local rotation speed at that point, a?Ω? sin θ,
for the velocity scale.

If we convert to the Reynolds number RL a comparison between our results and
those of Lingwood (1995) can then be made. From this we see that the critical values
for absolute instability at each latitude approach those of the rotating disk as we
move towards the pole. The values of α◦r , α◦i and β in the neutral curve calculated at
θ = 10◦ show very good agreement with the neutral curves of figure 8 in Lingwood
(1995) for the rotating disk, although the values of γ◦r are different due to the differing
frames of reference used.

Figure 13 shows a comparison between the predicted onset of absolute instability
and the experimentally measured transition points from Kohama & Kobayashi (1983),
using the local Reynolds number RX at each latitude. For latitudes up to and including
θ = 70◦ the experimental results show that transition occurs at roughly the same
local Reynolds number at each latitude, despite the instability waves first appearing
across a wide parameter range with varying rotating rate and sphere radius. This
observation leads us to expect that the underlying transition mechanism here is an
absolute instability. At θ = 80◦ we see the transition point at a rather lower local
Reynolds number, perhaps indicating that the underlying mechanism is different at
high latitudes. The predicted onset of absolute instability is seen to match onto the
experimental value well at a latitude of θ = 30◦. At this latitude the experimental
value is RX = 2.2 × 105 but it should be noted that all experimental data used
have simply been read off the graphical results of Kohama & Kobayashi (1983)
and so must be considered to be approximate. Beyond this latitude the discrepancy
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θ (deg.) R RX

10 2879.81 2.51× 105

20 1413.10 2.39× 105

30 912.10 2.18× 105

40 650.31 1.90× 105

50 480.63 1.54× 105

60 352.21 1.13× 105

70 239.50 6.59× 104

80 115.39 1.83× 104

Table 1. Values of the Reynolds number R and local Reynolds number RX at the onset of
absolute instability at each latitude θ.

θ

106
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104

RX

10 20 30 40 50 60 70 80

Transition points of Kohama & Kobayashi (1983)

Predicted onset of absolute instability

Figure 13. A comparison of the predicted critical RX values for absolute instability with the
transitional RX values measured by Kohama & Kobayashi (1983).

increases, but still remains relatively small below θ = 70◦, again perhaps indicating
that the transition mechanism may not be an absolute instability at the highest
latitudes.

We have now seen that the results of both the convective and absolute instability
analyses show a large discrepancy at θ = 80◦ when compared to experimental results.
Another explanation for the discrepancies is that this latitude may be sufficiently close
to the boundary-layer eruption at the equator for the boundary-layer approximations
to be invalid.

A consequence of the fact that pinch points occur only between branches that
originate in distinct halves of the α-plane is that the total number of crossings of
the real axis must be odd (Kupfer, Bers & Ram 1987). It follows that an absolutely
unstable region must be surrounded by a region in which one mode is convectively
unstable on one side of the source and the other mode stable in the opposite
direction.
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5. Conclusion
In this paper the rotating sphere was considered in a fixed frame of reference.

This formulation has been used in all previous theoretical investigations on the
rotating-sphere boundary layer, but is in contrast to the related work of Lingwood
(1995) on the rotating disk. In Lingwood’s work a frame of reference fixed on the
rotating disk is used, resulting in Coriolis terms in the mean-flow and perturbation
equations. Apart from the Coriolis terms, the equations governing the rotating sphere
are similar to those of the rotating disk. It is known that the mean-flow profiles of the
rotating-sphere boundary layer reduce to those of the rotating disk near to the pole,
see White (1991). Our investigation shows that the neutral curves for both convective
and absolute instability of the boundary layer on the rotating sphere approach those
of the rotating disk as we approach the pole. The convective instability neutral curves
of Taniguchi et al. (1998) do not do this and we expect that this is due to the different
approach taken in their calculations.

The convective instability analysis shows that crossflow instabilities dominate below
θ = 66◦, whilst streamline-curvature instabilities dominate above this latitude due to
a region of reverse flow in the radial component of the mean flow. For latitudes lower
than θ = 60◦ we see very good agreement between the experimental critical Reynolds
numbers of Kohama & Kobayashi (1983) and the predicted onset of streamline-
curvature instabilities for stationary vortices. However, the critical Reynolds numbers
for experiments conducted on a smaller sphere match onto the predicted onset
of crossflow instabilities. This suggests that different instability modes were being
measured by Kohama & Kobayashi on the different sized spheres. Above a latitude
of θ = 60◦ we see discrepancies between the experimental critical values and those
predicted by assuming stationary vortices. These discrepancies start at the Reynolds
number measured by Kobayashi & Arai (1990) for the onset of vortices rotating
at 0.76 times the sphere surface speed, and are greatly reduced when we consider
vortices rotating at this slower speed. However, a discrepancy still remains at θ = 80◦.
Using a different approach in the analysis we have shown that the occurrence of the
slowly rotating vortices may be associated with the first point at which the streamline-
curvature mode becomes dominant, i.e. θ = 66◦. However, we are not able to fix the
slower longitudinal wave speed at the high latitudes from this theory.

The number of spiral vortices at the onset of instability is predicted to decrease with
increased latitude, which is consistent with the observations of Kohama & Kobayashi.
As the analysis moves towards the pole we predict that the number of spiral vortices
approaches n ≈ 22, the theoretical prediction for the rotating disk (Malik 1986).
This value differs from the experimental observations for both the sphere and the
disk of n ≈ 31 because the spiral vortices are not neutral but growing spatially in
the latitudinal direction. At the onset of instability the stationary vortices at each
latitude were predicted to have roughly the same vortex angles for each mode, the
values found being ε ≈ 11.4◦ and 19.4◦ at the onset of crossflow instabilities and
streamline-curvature instabilities respectively. These values agree well with those of
the rotating disk, and are reasonably close to the experimentally observed value of
ε ≈ 14◦ on the rotating sphere.

Expressing the observed transition points of Kohama & Kobayashi (1983) in terms
of a local Reynolds number, we find that transition occurs at roughly the same value
at all latitudes up to and including θ = 70◦. At θ = 80◦ the transition point is slightly
lower. Throughout the paper we have tried to associate transition with the onset of
absolute instability, and the predicted onset of the latitudinal absolute instability is
seen to match onto the experimental value well at a latitude of θ = 30◦. Beyond this
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the discrepancy increases but still remains small when below θ = 70◦. The theoretical
results show that the transition mechanism for the boundary layer on a rotating
sphere may be an absolute instability in the latitudinal direction for latitudes up to
θ = 70◦. Beyond this latitude the absolute instability may be suppressed and other
transition mechanisms apply.

Both the convective and absolute instability results show a large discrepancy at
θ = 80◦. The boundary layer is known to erupt at the equator causing the boundary-
layer assumptions to be invalid there; θ = 80◦ may be close enough to be affected by
this, giving an explanation for these discrepancies.

In the derivation of the governing equations, factors

1/(1 + η/R), (5.1)

that multiplied terms in the perturbation equations have been replaced by unity. This
approximation is similar to the parallel flow approximation found in many other
boundary-layer investigations and, after conducting the stability analyses, we are now
in a position to comment on the validity of the approximation at low and high
latitudes. As shown in figure 1, at low latitudes the boundary layer is seen to be fully
developed at around η = 5 but at higher latitudes it is seen to be fully developed only
above η = 10. This thickening of the boundary layer, together with the fact that the
critical Reynolds numbers for each type of instability decrease with increased latitude,
means that our approximation is less valid near to the equator. The inaccuracy is
smallest near to the pole where, at θ = 10◦, the onset of convective instability occurs
above R = 1500. This means that close to the pole the factor (5.1) is approximated
by unity with an inaccuracy of about 0.3%. At θ = 70◦ the convective instability
in the analysis of slow vortices has a critical Reynolds number of around R = 150.
Here we see that the factor (5.1) is approximated by unity with an error of around
6.7%. For the absolute instability calculations at this latitude the inaccuracy is around
4%. Although the inaccuracy caused by this approximation grows substantially as
the analysis moves towards the equator, it is the authors’ opinion that it is still not
sufficiently large to affect the conclusions of this work.

A number of open issues remain. For instance, more experiments will be required
in order to investigate the validity of some of the predictions made here, not least
the possible role of absolute instability in the transition (in much the same way as
was carried out by Lingwood 1997), but also measurement of the critical Reynolds
number for ‘slow’ vortices at lower latitudes. Additional effects also need to be
included in our analysis, such as the presence of axial flow and the behaviour of
more general bodies of revolution, and work is well under way in this direction.
Further, the relationship between our linear results and the occurrence of nonlinear
global modes, as recently found by Pier & Huerre (2001), needs to be explored.
Pier & Huerre describe the appearance of nonlinear fronts at the boundary between
convective instability upstream and absolute instability downstream, which of course
matches the structure of the linear stability found here on the rotating sphere, and
indeed by Lingwood on the rotating disk. The possibility of such a nonlinear wave
undergoing some secondary instability, to lead to transition, requires careful study.
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